Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Chromatogr A ; 1724: 464923, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653039

RESUMO

Efficient separation of deoxyribonucleic acid (DNA) through magnetic nanoparticles (MN) is a widely used biotechnology. Hedgehog-inspired MNs (HMN) possess a high-surface-area due to the distinct burr-like structure of hedgehog, but there is no report about the usage of HMN for DNA extraction. Herein, to improve the selection of MN and illustrate the performance of HMN for DNA separation, HMN and silica-coated Fe3O4 nanoparticles (Fe3O4@SiO2) were fabricated and compared for the high-efficient separation of pathogenic bacteria of DNA. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are typical Gram-negative and Gram-positive bacteria and are selected as model pathogenic bacteria. To enhance the extraction efficiency of two kinds of MNs, various parameters, including pretreatment, lysis, binding and elution conditions, have been optimized in detail. In most separation experiments, the DNA yield of HMN was higher than that of Fe3O4@SiO2. Therefore, a HMN-based magnetic solid-phase microextraction (MSPE) and quantitative real-time PCR (qPCR) were integrated and used to detect pathogenic bacteria in real samples. Interestingly, the HMN-based MSPE combined qPCR strategy exhibited high sensitivity with a limit of detection of 2.0 × 101 CFU mL-1 for E. coli and 4.0 × 101 CFU mL-1 for S. aureus in orange juice, and 2.8 × 102 CFU mL-1 for E. coli and 1.1 × 102 CFU mL-1 for S. aureus in milk, respectively. The performance of the proposed strategy was significantly better than that of commercial kit. This work could prove that the novel HMN could be applicable for the efficient separation of DNA from complex biological samples.

2.
J Neurosci Res ; 102(1): e25255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814990

RESUMO

Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-ß signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-ß signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-ß signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-ß signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-ß signaling pathway, the role of the TGF-ß signaling pathway in SCI, and the latest evidence for targeting the TGF-ß signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-ß signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-ß signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/metabolismo , Apoptose , Gliose/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Medula Espinal/metabolismo
3.
Int J Ophthalmol ; 16(10): 1568-1573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854378

RESUMO

AIM: To improve the standard three-port vitrectomy for establishing and evaluating an endotamponade model in rabbits. METHODS: Three ports were prepared near the third eyelid of rabbits, and the infusion port was placed at the inferior nasal quadrant with the inserted cannula linking with a self-designed handheld rigid infusion catheter. All right eyes of rabbits underwent a modified 25-gauge vitrectomy and were subsequently filled with balanced salt solution, silicone oil, and eight-arm polyethylene glycols (8-arm PEGs) hydrogel separately for comparison. Ophthalmic examinations were performed regularly to record the changes after the surgery. RESULTS: Successful vitrectomy was achieved among 44 chinchilla rabbits. The mean operation time was 4.51±1.25min. Four eyes (9.1%) presented limited lens touch and two eyes (4.5%) showed retinal touch during surgery. Incision leakage was found in three eyes (6.8%) after surgery. There was no endophthalmitis, hemorrhage, or retinal detachment during the observation period and ophthalmic examinations after the implantation of vitreous substitutes. CONCLUSION: The modified technique of the standard vitrectomy applied in the endotamponade model in rabbits shows excellent safety and practicality.

4.
Nutr Metab (Lond) ; 20(1): 31, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443030

RESUMO

BACKGROUND: Monochorionic (MC) twins present a higher incidence of unfavorable clinical perinatal outcomes than dichorionic (DC) twins, often in association with placental vascular anastomosis. In this study, we profiled the umbilical cord plasma metabolomes of uncomplicated MC and DC twin pregnancies and related these to several offspring outcomes, previously associated with birthweight. METHODS: Umbilical vein blood samples were collected at birth from 25 pairs of uncomplicated MC twins and 24 pairs of uncomplicated DC twins. The samples were subjected to gas chromatography-mass spectrometry-based metabolomics. 152 metabolites were identified from the cord plasma samples of MC and DC twins. Partial least squares discriminant analysis and pathway analysis were performed to compare within DC/MC twin pairs and between DC and MC twins. A generalized estimating equation (GEE) model was utilized to explore the correlation between metabolic differences and birthweight discordance within and between twin pairs. RESULTS: Our study revealed clear differences between the metabolite profiles of umbilical cord plasma of MC and DC twins. Metabolite profiles in MC within twin pairs and DC within twin pairs were characterized by the differences in 2 - hydroxyglutaramic acid levels and nicotinamide levels, respectively. The metabolic pathways of GSH, tryptophan, and fatty acid metabolism, were significantly downregulated in MC twins compared to DC twins. In addition, the concentration of caffeine and decamethyl-cyclopentasiloxane (D5) was positively correlated with birthweight in MC and DC twins. CONCLUSION: This study demonstrated that the altered metabolites in umbilical plasma made contributions to the different chorionicities between uncomplicated MC twins and DC twins. The chorionicity of twins seems to affect the metabolic cross-talk between co-twin pairs and be related to birthweight discordance of twins.

5.
Turk J Gastroenterol ; 34(8): 802-812, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462231

RESUMO

BACKGROUND/AIMS: Our previous work identified the dimethyladenosine transferase 1 homolog as a novel prognostic factor for detecting human gastric carcinoma with high sensitivity and specificity. The high expression of dimethyladenosine transferase 1 is closely associated with the occurrence and progression of gastric carcinoma. However, the underlying mechanism of dimethyladenosine transferase 1 for the occurrence and development of gastric carcinoma is not well elucidated yet. MATERIALS AND METHODS: In our present study, the biological role of dimethyladenosine transferase 1 on cell proliferation, apoptosis, and cell cycle progression in human gastric carcinoma cells was investigated through in vitro and in vivo assays by the overexpression and knockdown of dimethyladenosine transferase 1 2-way authentication method. RESULTS: We found that the overexpression of dimethyladenosine transferase 1 significantly promotes cell proliferation (P < .001) and inhibition of cell apoptosis (P < .01) in SGC-7901 cells. However, the in vivo experiment results of the knockdown dimethyladenosine transferase 1 using small interfering RNAs in the MKN-45 are just the opposite. Reverse-transcriptase polymerase chain reaction and western blotting analysis revealed that overexpressed dimethyladenosine transferase 1 in SGC-7901 cells significantly activated the AKT pathway compared to control cells. In contrast, we found that apoptosis genes such as Caspase-3 and Caspase-9 were downregulated in those cells. The xenograft nude mice model exhibited increased tumor growth (P < .01) and weight loss (P < .01), with the overexpression of dimethyladenosine transferase 1 homolog in the SGC-7901 cells. These results have been further confirmed through backward verification in dimethyladenosine transferase 1 knockdown cells. CONCLUSIONS: Taken together, our results indicated that the dimethyladenosine transferase 1 plays a crucial role in stimulating cancer cell proliferation and contributes to apoptosis resistance in human gastric carcinoma. Meanwhile, it provides a potential therapeutic target for gastric carcinoma treatment and is worthy of further studies.


Assuntos
Carcinoma , Neoplasias Gástricas , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transferases/genética , Transferases/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Apoptose/genética , Carcinoma/patologia , Neoplasias Gástricas/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
6.
Biochem Biophys Res Commun ; 676: 182-189, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523816

RESUMO

It has been reported that cadherin 6 (CDH6) upregulation is associated with enhanced epithelial-to-mesenchymal transition (EMT) in several types of solid tumor cells. The current study aimed to explore the effect of CDH6 on the migration and invasion of stomach adenocarcinoma (STAD) cells, the transcription factors involved in CDH6 dysregulation and their effect on mitochondrial fission. Bioinformatics analysis was performed using data extracted from the Genotype-Tissue Expression Project, the Cancer Genome Atlas and Kaplan-Meier plotter. AGS and HGC27 cells were used to establish an in vitro STAD cell model. The results showed that higher CDH6 expression was associated with significantly shorter overall survival in patients with STAD. In addition, CDH6 overexpression promoted wound healing, enhanced the invasion ability of tumor cells and increased mitochondrial fission. Glioma-associated oncogene family zinc finger 2 (GLI2) could bind to the CDH6 promoter and activate its transcription. Fluorescent labeling also showed that GLI2 overexpression promoted mitochondrial fission. However, CDH6 silencing significantly reduced mitochondrial fragmentation. Besides, GLI2 overexpression notably upregulated phosphorylated-focal adhesion kinase and dynamin-related protein 1. However, the above effects were largely abrogated by CDH6 knockdown. In conclusion, the present study suggested that the novel GLI2/CDH6 axis could enhance the migration, invasion and mitochondrial fission of STAD cells.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Dinâmica Mitocondrial , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteína Gli2 com Dedos de Zinco/metabolismo
7.
Pathol Res Pract ; 248: 154685, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37494803

RESUMO

Intervertebral disc degeneration (IDD), the key pathological process in low back pain, is characterized by chronic inflammation and progressive cell death. Pyroptosis is a type of pro-inflammatory programmed necrosis mediated by inflammasomes that is dependent on the gasdermin family of proteins. An in-depth study of the pathological mechanisms of IDD has revealed that pyroptosis plays an important role in its occurrence and development. The molecular characteristics and activation signaling mechanisms of pyroptosis are reviewed in this paper. Moreover, the specific roles of pyroptosis in IDD pathology are outlined and various targeted drugs for its treatment are highlighted.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Piroptose , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Apoptose , Transdução de Sinais
8.
Pathol Res Pract ; 246: 154496, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178619

RESUMO

BACKGROUND: Tumor drug resistance is a leading cause of tumor treatment failure. To date, the association between FOS-Like antigen-1 (FOSL1) and chemotherapy sensitivity in colon cancer is unclear. The present study investigated the molecular mechanism of FOSL1 regulating 5-Fluorouracil (5-FU) resistance in colon cancer. METHODS: FOSL1 expression in colon cancer was analyzed by bioinformatics methods, and its downstream regulatory factors were predicted. Pearson correlation analyzed the expression of FOSL1 and downstream regulatory gene. Meanwhile, the expression of FOSL1 and its downstream factor Pleckstrin Homology-Like Domain Family A Member 2 (PHLDA2) in colon cancer cell lines was measured by qRT-PCR and western blot. The regulatory relationship between FOSL1 and PHLDA2 was verified by chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter assay. The effects of the FOSL1/PHLDA2 axis on the resistance in colon cancer cells to 5-FU were analyzed by cell experiments. RESULTS: FOSL1 expression was evidently up-regulated in colon cancer and 5-FU resistant cells. FOSL1 was positively correlated with PHLDA2 in colon cancer. In vitro cell assays showed that low expression of FOSL1 significantly enhanced 5-FU sensitivity in colon cancer cells, significantly suppressed the proliferation of cancer cells, and induced apoptosis. Overexpression of FOSL1 presented the opposite regulatory trend. Mechanistically, FOSL1 activated PHLDA2 and up-regulated its expression. Moreover, by activating glycolysis, PHLDA2 promoted 5-Fu resistance and cell proliferation, and reduced cell apoptosis in colon cancer. CONCLUSION: Down-regulated FOSL1 expression could enhance the 5-FU sensitivity of colon cancer cells, and FOSL1/PHLDA2 axis may be an effective target for overcoming chemotherapy resistance in colon cancer.


Assuntos
Neoplasias do Colo , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-fos , Humanos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Nucleares/genética , Fluoruracila/farmacologia , Apoptose , Proliferação de Células , Biologia Computacional
9.
Food Chem Toxicol ; 174: 113664, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36775137

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a family of highly fluorinated aliphatic substances widely used in industrial and commercial applications. This study aims to determine the inhibition of PFASs towards sulfotransferases (SULTs) activity, and trying to explain the toxicity mechanism of PFASs. In vitro recombinant SULTs-catalyzed sulfation of p-nitrophenol (PNP) was utilized as a probe reaction. The incubation system was consisted of PFASs, SULTs, PNP, 3'-phosphoadenosine-5'-phosphosulfate, MgCl2 and Tris-HCl buffer. Ultra-performance liquid chromatography was employed for analysis of the metabolites. All tested PFASs showed inhibition towards SULTs. The longer the carbon chain length of the PFASs terminated with -COOH, the higher is its capability of inhibiting SULT1A3. PFASs with -SO3H had a relatively higher ability to inhibit SULT1A3 activity than those with -COOH, -I and -OH. The inhibition kinetic parameter was 2.16 and 1.42 µM for PFOS-SULT1A1, PFTA-SULT1B1. In vitro in vivo extrapolation showed that the concentration of PFOS and PFTA in human matrices might be higher than the threshold for inducing inhibition of SULTs. Therefore, PFASs could interfere with the metabolic pathways catalyzed by SULTs in vivo. All these results will help to understand the toxicity of PFASs from the perspective of metabolism.


Assuntos
Fluorocarbonos , Sulfotransferases , Humanos , Sulfotransferases/metabolismo , Nitrofenóis , Relação Estrutura-Atividade
10.
J Cardiovasc Dev Dis ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36826573

RESUMO

BACKGROUND: Observational studies have found an association between increased whole body water mass (BWM) and atrial fibrillation (AF). However, the causality has yet to be confirmed. To provide feasible protective measures on disease development, we performed Mendelian randomization (MR) design to estimate the potential causal relationship between increased BWM and AF. METHODS: We implemented a two-sample MR study to assess whether increased BWM causally influences AF incidence. For exposure, 61 well-powered genetic instruments extracted from UK Biobank (N = 331,315) were used as the proxies of BWM. Summary genetic data of AF were obtained from FinnGen (Ncase = 22,068; Ncontrol = 116,926). Inverse-variance weighted (IVW), MR-Egger and weighted median methods were selected to infer causality, complemented with a series of sensitivity analyses. MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) and Radial MR were employed to identify outliers. Furthermore, risk factor analyses were performed to investigate the potential mechanisms between increased BWM and AF. RESULTS: Genetic predisposition to increased BWM was demonstrated to be significantly associated with AF in the IVW model (OR = 2.23; 95% CI = 1.47-3.09; p = 1.60 × 10-7), and the result was consistent in other MR approaches. There was no heterogeneity or pleiotropy detected in sensitivity analysis. MR-PRESSO identified no outliers with potential pleiotropy after excluding outliers by Radial MR. Furthermore, our risk factor analyses supported a positive causal effect of genetic predicted increased BWM on edematous diseases. CONCLUSIONS: MR estimates showed that a higher BWM could increase the risk of AF. Pathological edema is an important intermediate link mediating this causal relationship.

11.
Med Oncol ; 40(2): 75, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609777

RESUMO

Metabolomics serves as a useful tool for identifying biomarkers of disease and uncovering pathogenic mechanisms. However, most metabolomic studies use biological fluids such as blood and urine as biospecimens, which could be dramatically influenced by daily activities and dietary variation, resulting in measurement fluctuations. In contrast, hair may serve as a robust source of stable longitudinal metabolite information. Here, we conducted a pilot study to investigate the possibility of using hair as a biospecimen for the metabolomic analysis of cervical cancer. Hair, plasma, urine, and cervical tissue samples from cervical cancer and benign tumor patients were collected. Biospecimens were then tested using a gas chromatography-mass spectrometry-based metabolomic platform. The expressions of enzymatic genes related to metabolic changes were validated using qPCR. Statistical analyses were calculated via the R-console platform. Metabolite profiles in both hair and cervical tissue samples were significantly different between cancer and control groups, while no difference was observed in plasma and urine samples. Further analysis showed that most of the altered metabolites in hair were upregulated, and they had a negative correlation with those in the cervical tissue. Eight common metabolites showed an area under the Receiver Operating Characteristic curve greater than 0.95. These metabolites primarily participated in amino acid metabolism, cofactor synthesis, ferroptosis, and glycolysis. The gene expressions (IDH1, OGDH, GLUD1, ENO1, GSS, and GPX4) associated with the shortlisted metabolic pathways were also upregulated. Our study is the first to reveal metabolomic changes of hair in cervical cancer patients and demonstrates the potential for the hair metabolome to be used for biomarker identification in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico , Projetos Piloto , Metabolômica/métodos , Metaboloma , Biomarcadores/metabolismo , Cabelo/metabolismo
12.
Curr Pharm Biotechnol ; 24(11): 1343-1350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36503387

RESUMO

Intervertebral disc degeneration (IDD) is the leading cause of lower back pain and seriously affects the quality of life of patients. The intervertebral disc (IVD) is an environment of hypoxia, ischemia, acidity, and hypertonicity. Matrix acidity potentially negatively affects gene expression, activity, proliferation, and apoptosis of IVD cells. Acid-sensing ion channels (ASICs) are a group of proton-gated ion channels that play important roles in physiological and pathological conditions. The distribution of ASICs in the nucleus pulposus (NP), annulus fibrosus, cartilage endplate, and nucleus pulposus mesenchymal stem cells (NP-MSCs), as well as the special functions of ASIC1a and ASIC3, show that ASICs play an important role in IDD. In this review, we comprehensively discuss the roles of ASICs in the development and basic pathology of IDD and their potential relevance as therapeutic targets. A deeper understanding of the roles of ASICs in these processes may provide novel therapeutic targets for IDD prevention and treatment.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Qualidade de Vida , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia
13.
Clin Transl Oncol ; 25(3): 611-619, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346572

RESUMO

The incidence of cancer is increasing worldwide and is becoming the most common cause of death. Identifying new biomarkers for cancer diagnosis and prognosis is important for developing cancer treatment strategies and reducing mortality. Long non-coding RNAs (lncRNAs) are non-coding, single-stranded RNAs that play an important role as oncogenes or tumor suppressors in the occurrence and development of human tumors. Abnormal expression of human leukocyte antigen complex group 18 (HCG18) is observed in many types of cancer, and its imbalance is closely related to cancer progression. HCG18 regulates cell proliferation, invasion, metastasis, and anti-apoptosis through a variety of mechanisms. Therefore, HCG18 is a potential tumor biomarker and therapeutic target. However, the therapeutic significance of HCG18 has not been well studied, and future research may develop new intervention strategies to combat cancer. In this study, we reviewed the biological function, mechanism, and potential clinical significance of HCG18 in various cancers to provide a reference for future research.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Prognóstico , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
14.
J Environ Sci (China) ; 125: 401-426, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375925

RESUMO

The interactions between metals and oxide supports, so-called metal-support interactions (MSI), are of great importance in heterogeneous catalysis. Pd-based automotive exhaust control catalysts, especially Pd-based three-way catalysts (TWCs), have received considerable research attention owing to its prominent oxidation activity of HCs/CO, as well as excellent thermal stability. For Pd-based TWCs, the dispersion, chemical state and thermal stability of Pd species, which are crucial to the catalytic performance, are closely associated with interactions between metal nanoparticles and their supporting matrix. Progress on the research about MSI and utilization of MSI in advanced Pd-based three-way catalysts are reviewed here. Along with the development of advanced synthesis approaches and engine control technology, the study on MSI would play a notable role in further development of catalysts for automobile exhaust control.

15.
Front Pharmacol ; 14: 1242548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259276

RESUMO

Objective: To systematically evaluate the safety and efficacy of docetaxel plus S-1-based therapy in gastric cancer treatment. Methods: PubMed, Embase, The Cochrane Library, and Web of Science electronic databases were searched for randomized controlled trials on docetaxel plus S-1-based therapy in the treatment of gastric cancer from the establishment of the database to 1 September 2022. Relevant studies were included per pre-defined eligibility criteria, and two researchers independently screened and assessed the included literature using Review Manager v5. Outcome measures and statistics related with efficacy and safety profiles were extracted from the included studies, and Stata v15.1 was used for pooled analysis. Results: Objective response rate (odds ratio = 2.34, 95% CI = [1.32, 4.13], p = 0.003), relapse-free survival (HR = 0.68, 95% CI = [0.58, 0.79], p < 0.001), progression-free survival (HR = 0.81, 95% CI = [0.68, 0.96], p = 0.016), and overall survival (HR = 0.86, 95% CI = [0.79, 0.95], p = 0.002) of docetaxel plus S-1-based therapy (DS-based therapy) in gastric cancer treatment were better than those of the non-DS-based therapy. However, DS-based therapy was associated with increased risk of certain adverse drug effects, such as alopecia, leukopenia, and oral mucositis. Further studies are warranted to validate the efficacy superiority of DS-based versus non-DS-based regimens as per our trial sequential analysis findings. Conclusion: DS-based therapy significantly improves patients' clinical outcomes in gastric cancer, albeit at the cost of increased toxicity. Further RCTs are needed to confirm the efficacy superiority of DS-based regimens.

16.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233312

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase that may play a part in chemoresistance in ovarian cancer. However, its role in cisplatin (DDP) resistance is unclear. Here, the expression level of IDO1 in tumors in platinum-resistant (n = 22) and -sensitive (n = 46) ovarian cancer patients was determined, and then how IDO1 modulated DDP resistance was explored in vitro and in vivo. The IDO1 expression level in platinum-resistant patients was higher than that in -sensitive patients, and a higher IDO1 level was correlated with poor prognosis in type II cancer patients. Up-regulating IDO1 decreased DDP-induced apoptosis in SKOV3 cells via inhibiting the ROS/p53 cell-death pathway, thereby attenuating cytotoxicity of DDP. Silencing IDO1 enhanced p53-dependent apoptosis by increasing ROS accumulation, thereby enhancing DDP against SKOV3 cells. Down-knocking IDO1 augmented the action of DDP in vivo. These data demonstrated that silencing IDO1 enhanced the efficacy of DDP by intensifying p53-dependent apoptosis, and that targeting IDO1 can be a strategy to modulate DDP-based chemotherapy for epithelial ovarian cancer.


Assuntos
Antineoplásicos , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Heme/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Platina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética
17.
ACS Appl Mater Interfaces ; 14(38): 43442-43455, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106798

RESUMO

The influences of gaseous, weakly adsorbed, and strongly adsorbed NH3 on the low-temperature (<100 °C) hydrothermal stability of SAPO-34 and Cu-SAPO-34 were investigated. NH3 temperature-programmed desorption (NH3-TPD), 1H magic angle spinning nuclear magnetic resonance (MAS NMR), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were adopted to characterize the adsorption states of NH3 and H2O in SAPO-34, and the destruction of the SAPO-34 framework was revealed by direct and cross-polarization 29Si, 27Al, and 31P MAS NMR. Gaseous NH3 coadsorbed with H2O inside SAPO-34 micropores and induced the hydrolysis of framework P-O-Al and Si-O(H)-Al bonds. Weakly adsorbed NH3 was released during aging and played a similar negative role to gaseous NH3. When being combined with hydrolyzed Al species from the framework, active Cu ions transformed to inactive CuAl2O4-like species, leading to deactivation in low-temperature SCR of Cu-SAPO-34. Strongly adsorbed NH4+ via 200 °C preadsorption protected the framework integrity of SAPO-34 and the SCR activity of Cu-SAPO-34.

18.
Front Oncol ; 12: 916375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982964

RESUMO

Ovarian cancer (OC) is the third most common malignant tumor of women accompanied by alteration of systemic metabolism, yet the underlying interactions between the local OC tissue and other system biofluids remain unclear. In this study, we recruited 17 OC patients, 16 benign ovarian tumor (BOT) patients, and 14 control patients to collect biological samples including ovary plasma, urine, and hair from the same patient. The metabolic features of samples were characterized using a global and targeted metabolic profiling strategy based on Gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) revealed that the metabolites display obvious differences in ovary tissue, plasma, and urine between OC and non-malignant groups but not in hair samples. The metabolic alterations in OC tissue included elevated glycolysis (lactic acid) and TCA cycle intermediates (malic acid, fumaric acid) were related to energy metabolism. Furthermore, the increased levels of glutathione and polyunsaturated fatty acids (linoleic acid) together with decreased levels of saturated fatty acid (palmitic acid) were observed, which might be associated with the anti-oxidative stress capability of cancer. Furthermore, how metabolite profile changes across differential biospecimens were compared in OC patients. Plasma and urine showed a lower concentration of amino acids (alanine, aspartic acid, glutamic acid, proline, leucine, and cysteine) than the malignant ovary. Plasma exhibited the highest concentrations of fatty acids (stearic acid, EPA, and arachidonic acid), while TCA cycle intermediates (succinic acid, citric acid, and malic acid) were most concentrated in the urine. In addition, five plasma metabolites and three urine metabolites showed the best specificity and sensitivity in differentiating the OC group from the control or BOT groups (AUC > 0.90) using machine learning modeling. Overall, this study provided further insight into different specimen metabolic characteristics between OC and non-malignant disease and identified the metabolic fluctuation across ovary and biofluids.

19.
Hum Cell ; 35(5): 1364-1374, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35864416

RESUMO

Increasing evidence has shown that long non-coding RNAs (lncRNAs), which are non-coding endogenous single-stranded RNAs, play an essential role in various physiological and pathological processes through transcriptional interference, post-transcriptional regulation, and epigenetic modification. Moreover, lncRNAs, as oncogenes or tumor suppressor genes, play an important role in the occurrence and development of human cancers. Prostate androgen-regulated transcript 1 (PART1) was initially identified as a carcinogenic lncRNA in prostate adenomas. The upregulated expression of PART1 plays a tumor-promoting role in liver, prostate, lung cancers, and other tumors. In contrast, the expression of PART1 is downregulated in esophageal squamous cell carcinoma, glioma, and other tumors, which may inhibit the tumor. PART1 plays a dual role in cancer and regulates cell proliferation, apoptosis, invasion, and metastasis through a variety of potential mechanisms. These findings suggest that PART1 is a promising tumor biomarker and therapeutic target. This article reviews the biological functions, related mechanisms, and potential clinical significance of PART1 in a variety of human cancers.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Androgênios , Proliferação de Células , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Próstata/metabolismo , RNA Longo não Codificante/fisiologia
20.
Pathol Res Pract ; 235: 153959, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35653923

RESUMO

Intervertebral disc degeneration (IDD) is a key pathological process underlying low back pain. Although, to date, specific molecular mechanisms have not been elucidated, at the cellular level, it is mainly due to pathological changes in the life process of nucleus pulposus (NP) cells in the intervertebral disc (IVD). These changes are closely related to cell proliferation, apoptosis, senescence, autophagy, inflammation, and extracellular matrix (ECM) remodeling. Long noncoding RNAs (lncRNAs) have gradually become a focus of scientific research because of their functional complexity and local tissue specific expression. Moreover, they mediate a series of cellular signaling pathways in NP cells by competing for microRNA (miRNA) or directly targeting gene expression by mRNA adsorption, thereby regulating cell life activities that play a vital role in the mechanism underlying IDD. In-depth studies on lncRNAs can help identify new therapeutic targets or aid in developing IDD treatment strategies at the gene level and those based on regenerative medicine, thus providing new ideas for researchers. This article reviews the classification, biological functions, mechanisms of action, and therapeutic potential of lncRNAs in IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Núcleo Pulposo , RNA Longo não Codificante , Apoptose/genética , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...